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Intrinsically anomalous roughness of randomly crumpled thin sheets
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We study the effect of folding ridges on the scaling properties of randomly crumpled sheets of different
kinds of paper in the folded and unfolded states. We found that the mean ridge length scales with the sheet size
with the scaling exponent u determined by the competition between bending and stretching deformations in the
folded sheet. This scaling determines the mass fractal dimension of randomly folded balls Dy,=2/u. We also
found that surfaces of crumpled balls, as well as unfolded sheets, both display self-affine invariance with ¢
=vpp, iIf <y, where v =3/4 is the size exponent for crumpled phantom membrane, or both exhibit an
intrinsically anomalous roughness characterized by the universal local roughness exponent {=0.72+0.04 and
the material dependent global roughness exponent a=pu, when p> vy, The physical implications of these

findings are discussed.
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I. INTRODUCTION AND BACKGROUND

In the past decade, there has been a great deal of interest
in crumpling processes, ranging from the folding of blood
cell’s membranes to the Earth’s crust buckling. In particular,
the statistical geometry of randomly crumpled membranes
and sheets has drawn much attention [ 1-3]. It was found that
all thin sheets of just about any material crumple in the same
way, such that the stress energy is concentrated in the net-
work of narrow ridges (folding creases) [4,5]. This leads to
anomalously low compressibility of folded sheets [6] and to
a very slow stress-strain relaxation in crumpled materials
[6,7]. Specifically, the diameter of a randomly crumpled pa-
per ball depends on the confinement force as R F~%, where
6~0.25 [8].

Early, it was found that randomly folded sheets exhibit
scale invariance, such that the ball mass (M =p,L?, where p,
is the surface mass density and L is the sheet size) scales
with its averaged diameter R as

M o RPw | (1)

where D), is the mass fractal dimension [9]. On the other
hand, it was noted that the external surfaces of randomly
crumpled sheets also reveal a multiscale roughness within a
wide range of length scales [10]. Besides, the roughness of
unfolded crumpled sheets is assumed to display a self-affine
scaling, characterized by the universal local roughness expo-
nent £, also called the Hurst exponent [2,11]. However, the
physical nature of crumpling geometry remains poorly un-
derstood [12].

Indeed, there is no clarity even about the scaling proper-
ties of crumpled elastoplastic sheets in the folded and un-
folded states. In particular, many authors, e.g. [7], have ex-
plicitly assumed that the folded state of randomly crumpled
thin sheets is characterized by the universal fractal dimension
DY°Y=25 determined by self-avoidance of a two-
dimensional sheet in three-dimensional space [13]; neverthe-
less, the experimental values of D,, range from 2.1 to 2.8 for
a crumpled ball made from sheets of different materials [ 14].
On the other hand, the dimensional analysis of the results of
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computer simulations has suggested that the fractal dimen-
sion of balls of randomly crumpled thin sheets [(h/L)?
< 107>, where h is the sheet thickness] is determined by the
scaling relation [8]

Ro LVF9, (2)

where the scaling exponents 6 and v=2/D),, are expected to
take the universal values for phantom (5=3/8, vph=3/4;
Dy;=8/3) and self-avoiding (8=1/4, v,=0.8; D5¥=2.5)
membranes characterized by the dimensionless Foppl-von
Kéarméan number y=EL?/ k> (L/h)>— o [8] (here E is the
Young modulus, k=cEh? is the bending rigidity of sheets,
and c=1 is a function of Poisson ratio). In the case of finite
v, the crumpled configurations of elastoplastic sheets are es-
sentially nonequilibrium, and so one can expect deviation
from the Flory approximation [15,16]. However, the com-
puter simulations [8] do not detect the effect of bending ri-
gidity on the values of scaling exponents. Furthermore, there
is also a controversy about the scaling properties of unfolded
sheet roughness [17]. Namely, quite recently, it was sug-
gested that {=0.71£0.01 [2], in contrast with the value of
£=0.88+0.06 reported previously in [11]. Besides, as far as
we know, the effect of the ridge network on the scaling prop-
erties of crumpled sheets has never been studied.

Accordingly, the aim of this work was to ascertain the
nature of crumpling patterns and to establish the interrela-
tionships between different scaling exponents characterizing
the geometrical properties of randomly crumpled sheets in
the folded and unfolded states.

II. EXPERIMENTS

Experiments with paper offer a convenient, economical
means of studying crumpling phenomena in the laboratory
[2,9-11,18-20]. Accordingly, to get an insight into the geom-
etry of crumpling, in this work we performed a study of
scaling properties of hand crumpled paper sheets of different
bending rigidity (see Table I) in both the folded [see Fig.
1(a)] and unfolded [see Fig. 1(b)] states. Moreover, we have
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TABLE 1. Thickness (h), surface density (p,), Young moduli (E;,E7), and yield stresses (oy,oyr) of
papers (subindices denote the direction of measurement: L along and T across the machine direction of
paper), and the scaling exponents characterizing crumpled sheets. Notice that all papers have the same mass

density: p=p,/h=900=50 kg/m?.

Commercial name

of paper Carbon Copia Biblia Albanene-1 Albanene-2
h (mm) 0.024+0.004  0.030+0.003  0.039+0.002  0.068+0.005  0.087+0.005
pa (g/m?) 22+0.8 27+1 35.6%0.5 63+1 80+2
E; (MPa) 3155175 3500+ 150 3931+144 7102+200 7250+200
Er (MPa) 1860+232 1950+200 1355+65 403687 4100+100
oy; (MPa) 34.6x2 355+%2 37.5+0.7 56.8+3 60+3
oyr (MPa) 11.9+0.5 154=+1 23.4x1 411 45+3
Dy 2.13£0.05 2.25+0.05 2.30+0.05 2.54+0.06 2.72+0.06
{p 0.72+0.04 0.72+0.04 0.71+0.03 0.72+0.02 0.71+0.04
ag 0.94+0.03 0.88+0.04 0.86+0.03 0.79+0.02 0.73+0.02
53 0.70+0.04 0.71+0.03 0.71+0.04 0.71+0.05 0.71+0.05
ar 0.93+0.02 0.89+0.02 0.87+0.03 0.79+0.01 0.74+0.02
) 0.95+0.1 0.90+0.1 0.85+0.05 0.78+0.06 0.72+0.05

also studied the statistical geometry of the networks of fold-
ing ridges clearly observed when the unfolded sheet is flat-
tened [see Fig. 1(c)].

FIG. 1. The images of (a) crumpled balls from the Biblia paper
sheets of different sizes and (b) the unfolded state of a crumpled
sheet of Albanene-1 paper of size L=35 cm (white curve—the in-
tersection of light sheet with crumpled paper sheet). (c) Ridge net-
works formed in flattened crumpling sheets of size L=38 (1), 16 (2),
and 35 (3) cm of Albanene-1 paper.

A. Experimental details

In this work we studied the fractal geometry of randomly
crumpled sheets of five different kinds of paper characterized
by different thickness 4 and bending rigidity xk=cEh* (see
Table I). For this purpose the square sheets of paper with
edge size L were crumpled in hands into approximately
spherical balls of diameter R(L). The sheet size was varied
from Ly=2 to 100 cm with the relation L=\L, for scaling
factor A=1, 2, 4, 8, 16, 20, 32, and 50 [see Fig. 1(a)].
Notice that for sheets used in this work the ratio (h/L)? var-
ies in the range from 6X 1078 to 2X 1075, At least N=30
sheets of each size of each kind of paper were folded.

The mean diameter R;(L)=(1/n)Z]R; of each ball and its
standard deviation oo (1/\n)[Z"(R;—R)2]"? were deter-
mined from measurements of R; along n=15 directions taken
at random. Further, we calculated the ensemble averaged di-
ameters, R(L)=(R;(L)), where the brackets denote average
over N=30 balls of the same size L, and the corresponding
standard deviations op=(1/ \/IT’)[E?’ (R;—R)*]"2. We found
that for almost all balls, the distribution of R; can be well
fitted [21] by the inverse Gaussian distribution, while the
mean diameters R;(L) follow a normal distribution.

At the initial stage of this study we expect that the diam-
eter of the crumpled ball depends on the sheet size as well as
on the squeezing force according to the scaling relation (2)
and so, to obtain the ball fractal dimension from the scaling
relation (1), we need to reduce the variations in the squeez-
ing force applied to the sheets of different sizes. In practice,
however, we noted that the inherent statistical variations of
squeezing force in the hand crumpling experiments (+25% )
have only a small effect on the ball diameter because of the
very slight dependence R« F~*2 [8]. Furthermore, we noted
that, once the folding force is withdrawn, the ball diameter
increases with time during approximately 6-9 days, due to
the strain relaxation. In all cases we found that the ball di-
ameter increases as
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FIG. 2. Graphs of k(¢) versus #/7 for balls folded from
Albanene-1 paper of size L=70 cm with different initial confine-
ments ky=0.11£0.001 (1), 0.125+0.002 (2), and 0.1.4x0.003 (3).
In all cases the final confinement is k(> 7)=0.158+0.02. Points—
experimental data averaged over 10 experiments; lines—data fitting
with Eq. (3).

R(t) =R(0) + x In(t/7), (3)

where the strain relaxation rate (k) and the characteristic
time (7) are dependent on the initial confinement ratio k
=R(0)/L > F°/L'~", bending rigidity x=h’E, and air humid-
ity. The relative increase in the ball diameter can achieve
30% (see also [7]). Detailed study of strain relaxation in the
randomly crumpled sheets will be published elsewhere. Here
we only pointed out the finding that after strain relaxation
during 10 days the mean diameter of crumpled ball R(r> 7)
is almost independent of the initial confinement ratio [22]
and air humidity varies in the range from 25% to 35% [23],
at least for the balls with initial confinement ratio in the
range 0.1 <k,<<0.3 (see Fig. 2). Hence, to reduce the uncer-
tainties caused by variations in the squeezing force and strain
relaxation, all measurements reported below were performed
ten days after the balls were folded, when no changes in the
ball dimensions were observed.

The mass fractal dimensions of the crumpled ball series
were determined from the scaling behavior (1), where D), is
found to be different for crumpled balls of different kinds of
paper [see Fig. 3(a) and Table I]. To characterize the rough-
ness of the ball surface, we note that the global roughness of
balls scales with the ball diameter as

O'B“O'SOCRQS, (4)

where «g is the global roughness exponent of spherical balls
[see Fig. 3(b)]. Besides, we also studied the local roughness
of ball surfaces characterized by the local roughness expo-
nent s defined by the scaling behavior

or(Ag) = (R = (RYDIITD) . = AG, (5)

where (---) and (- --), denote the averages within the arc of
length A, and over the angle ¢ in spherical coordinates [24].
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FIG. 3. Log-log plots of (a) m=M/p,=L?* (cm?), (b) o (mm)
versus R (mm), and (c) og/R% versus A,/R (arbitrary units). The
numbering corresponds to different papers: Carbon (1), Copia (2),
Biblia (3), Albanene-1 (4), and Albanene-2 (4). Notice that the
graphs in panel (c) are shifted for clarity.

Further, to study the roughness of unfolded sheets, each
ball unfolded up to its height z(x,y) becomes a univalent
function of x and y [see Fig. 1(b)]. The unfolded sheet has a
rough surface composed by small tiles bounded by folding
edges. The global roughness of unfolded sheets can be char-
acterized through the scaling behavior of the standard devia-
tions of the maximum sheet height

o4(L) =([Az; - <AZJ‘>N]2>11V/2 o L, (6)

where Az;=max, . z,(x,y)-min,,;z;(x,y)[25]. We found
that the statistical distribution of maximum sheet heights
conforms to a log-normal distribution [21]. We note that the
statistical error associated with the unfolding process practi-
cally does not affect the scaling relation (6). Further, to de-
termine the local roughness exponent (; of unfolded
crumpled sheets, we obtained 15 profiles z,(x) of each sheet,
with the help of a laser which produces an approximately
horizontal sheet of light and a photocamera Coolpix-5700
with a resolution of 2560 X 1920 pixels (see also [2]). After
an appropriate calibration (see [2]) the bright curves of light
reflection [see Fig. 1(b)] were digitized with the help of
Scion Image software [26]. Accordingly, we measured the
local width of each profile,
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FIG. 4. (a) Statistical distributions of ridge length in an unfolded
sheet of Albalene-1 paper size 70X 70 cm. Bins—experimental
data; solid line—data fitting with log-normal distribution; dashed
line—data fitting with gamma distribution (p value =04486). (b)
Experimental values of exponents u (1), ag (2), and a; (3) plotted
versus v=2/Dy,.

o= ([200) = (DaPa)” = AL, )

where (- --), denotes an average over x in windows of size A.

The crumpling is an irreversible process, and so, a
crumpled elastic-plastic sheet can never be perfectly
smoothed again. Indeed, in the smoothed sheet we can ob-
serve the network of creases of different lengths [see Fig.
1(c)]. To characterize the statistical geometry of the folding
network we studied the crease-length distribution in sheets of
different sizes. We found that the crease-length distribution is
best fitted [21] by the log-normal distribution [see Fig. 4(a)
[27]]. This is consistent with experimental observations [2],
computer simulations [8], and theoretical model [5] based on
the hierarchical splitting of a ridge during sheet folding.

B. Scaling analysis

First of all, we found that the density of crumpled balls
scales with the ball diameter as

pg = po(RIh)Pw=3 (®)

for Rz>h, where p, is a decreasing function of the bending
rigidity of paper (see Table I). Besides, we noted that for the
hand-folded sheets with low bending rigidity the experimen-
tal values of Dy, are considerably less than the universal
value DEY=25 , Whereas for the more rigid sheets we found
Dy >D, V=25 (see Table I).

The global roughness of crumpled balls (4) is also char-
acterized by the material dependent global roughness expo-
nent. Moreover, we found that experimental values of ag and
D, (see Table I) are consistent with the empirical relation-
ship [see Fig. 4(b)]:
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asz V= 2/DM’ (9)

indicating that the surface roughness of the crumpled paper
balls scales as og*ogc R L.

It should be pointed out that, generally, the surface rough-
ness is characterized by different scaling exponents in the
local and global scales a={ [28,29]. Self-affine surfaces are
characterized by the unique roughness exponent, also called
the Hurst exponent H=a={, which is related to the box-
counting fractal dimension of the surface as Dy=3-H [30],
whereas the true area of the self-affine surface is character-
ized by the divider fractal dimension Dp=2/H, if H>2/3,
or Dp=3, if H=2/3 [30]. Hence, in the case of self-affine
invariance of the ball surface (ag={s), relation (9) implies
that the divider fractal dimension of the crumpled surface is
equal to the mass fractal dimension of the ball. In contrast to
this, the roughness characterized by different scaling expo-
nents in the local and global scales (a>¢) is called anoma-
lous. There are different types of anomalous roughness
which were classified within the concept of a generic dy-
namic scaling ansatz [28]. Therefore, to determine the nature
of ball roughness, we also studied the local roughness of ball
surfaces (5). We found that the local roughness of all balls is
characterized by the same universal local roughness expo-
nent {¢=0.72+0.04. Notice that the inequality

[s=0.72+0.04 < ag=2/D;; < 1 (10)

indicates the intrinsically anomalous nature (see [28,29]) of
the crumpled ball surface, except in the case of Albanene-2
paper, for which numerically ag= 5. This leads to the fol-
lowing scaling relation [see Fig. 3(c)]:

Or/Rs < ol < (AyR)*s. (11)

On the other hand, we found that the local width of unfolded
sheets demonstrates two distinct scaling regions [see Fig.
5(a)]. For intervals smaller than the characteristic ridge
length A~ we found {; =0.95+0.15, indicating the linear ge-
ometry of individual ridges (see also Ref. [2]), whereas in
larger intervals (A > A() the local roughness is characterized
by the universal local roughness exponent

£, =0.72£0.04=( (12)

for all kinds of paper (see Table I). Besides, we noted that A,
increases as sheet size L increases and so the local roughness
is also a function of L, such that A> A or the local rough-
ness of unfolded sheets scales as [see Fig. 5(b)]

o /L% < gy /R = (A/L)L, (13)

as is expected in the case of intrinsically anomalous rough-
ness (see [28,29]), characterized by the material dependent
global roughness exponent

ar=ag=v=2/Dy (14)

(see Table I). This finding is consistent with the sheet size
dependence of the global roughness of unfolded sheets,
which is found to scale as o, L*PMxR [see Fig. 5(c)].

To get a better insight into the anomalous nature of
crumpled sheet roughness, we analyzed the effect of sheet
size on the length of folded creases [see Fig. 1(c)]. We found
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FIG. 5. (a) Plots of o, (mm) versus Rz (mm) and log-log plots
of (b) the local width o7 (mm) of 1D profiles of unfolded sheets of
size 50X 50 cm versus window size A (mm), (¢) o;/L* versus
A/L (arbitrary units), and (d) the mean ridge length A (mm) ver-
sus sheet size L (mm). The numbering corresponds to different pa-
pers: Carbon (1), Copia (2), Biblia (3), Albanene-1 (4), and
Albanene-2 (4); notice that the graphs in panels (b)-(d) are shifted
for clarity.

that the ensemble averaged length of ridges increases with L
[see Fig. 5(d)] as

Ag o L¥, (15)

where the experimental values of w (see Table 1 [31]) are
found to be consistent with the empirical relation (see Fig. 5)

pu=v=a=2/Dy, (16)

which is also consistent with the scaling behavior of the
lower cutoff A=Ay of sheet roughness (the symbol = de-
notes the equality in the statistical sense).

III. DISCUSSION

Crumpling of thin elastoplastic sheets leads to the forma-
tion of complex folding patterns over several length scales.
This leads to an intriguing coupling between the mechanics
and geometry of crumpling phenomena. Moreover, the frac-
tal structure of crumpled balls determines their elastic prop-
erties [32]. Hence, to understand the nature of crumpling
processes, it is necessary to understand the scaling geometry
of crumpling and its relation to the geometry of the folding
network. In this way, this study provides the experimental
evidence that the scaling geometry of crumpled sheets in the
folded and unfolded states is governed by the scaling prop-
erties of folding creases.

Specifically, we found that the mass fractal dimension of
randomly folded sheets is determined by power law depen-
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dence of folding crease length on the sheet size (15), such
that Dy,=2/u. So, taking into account that 2=D,,=3, the
admissible range of u is

2B3=p=v=1. (17)

Experimental data from Table I suggest that the value of w is
determined by the competition between the bending and
stretching deformations in the folded sheet, such as for pa-
pers with larger thickness and bending rigidity 2/3<pu
< Vph=0.75, whereas for more flexible and thin papers, u
>v,=4/5=0.8. We note that for self-avoiding sheets with
finite bending rigidity numerical simulations predict vfd
=0.87> v,,; nevertheless, the dependence of v on sheet ri-
gidity was not detected [8]. These simulations also suggest
that the crumpled ball confinement ratio depends on the sheet
rigidity as [8]

( : )5
kg o —1, 18
0% ¥ 2 (18)
and so the size exponent is equal to

v=2B+1-24, (19)

where exponent (8 is determined by the self-avoiding inter-
actions [8].

When the thickness of the sheet is diminished without
limit, the deformations associated with sheet crumpling will
be of pure bending [33]. Hence, for self-avoiding membranes
(y— o ,k—0), the scaling exponent B is expected to be
Ba=0.025<6,=0.25, whereas for self-avoiding sheets of
finite rigidity (thickness) it was found that 8% =0.06+0.005
~ Bon=1/16=0.0625, i.e., it is almost the same as for phan-
tom membranes; nevertheless, éfazﬁsu=0.25<6ph=0.375
[8]. So the stretching of the folded sheet diminishes the ef-
fect of self-avoidance. Accordingly, the values of wu=v
>v,=0.8 can be attributed to the decrease in the effect of
short-range self-avoiding interactions for thin sheets with fi-
nite rigidity (see Table I), whereas the values of u=v<w,
=0.75 can be attributed to the competition between bending
and stretching in the more thick and rigid sheets (see Table
D).

The scaling behavior (15) also explains the intrinsically
anomalous nature of crumpled sheet roughness. Namely, we
found that each individual crumpled sheet possesses a self-
affine invariance within a bounded interval of length scales
with the sheet size dependent lower cutoff A= Ay, such that
at scales A<<A, the crumpled sheet is essentially flat ({
=1), whereas at larger scales the sheet roughness is charac-
terized by the local roughness exponent {=0.72+0.04, which
is found to be the same for all papers used in this work. In
contrast to this, the scaling behavior (15) of the cutoff A,
= Ay leads to the power-law dependence of sheet roughness
on the sheet size (13) with the material dependent global
roughness exponent a=pu [see Egs. (14) and (16)]. Conse-
quently, the ensemble of crumpled sheets of different sizes
displays an intrinsically anomalous roughness with the glo-
bal roughness exponent a=u>{. Another important finding
of this work is that the sheet roughness in the folded and
unfolded states is characterized by the same roughness expo-
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nents. Notice that the finding a={>0.5 indicates that the
configurations of crumpled sheets are not random; rather
they are characterized by the long-range correlations in the
local and global scales [31].

It should be pointed out that the universality of the local
roughness exponent is consistent with the concept of univer-
sality classes in kinetic roughening [34]. We note that our
finding {=0.72+0.04 is consistent with the universal rough-
ness exponent {=0.71£0.01 reported in [2], whereas the
value of roughness exponent 0.88+0.06 reported in [11] can
be associated with the material dependent global roughness
of crumpled paper (see Table I). Besides, we note the nu-
merical coincidence of {=0.72+0.04 with »,,=0.75 indicat-
ing that self-avoiding interactions do not affect sheet rough-
ening in the local scale, whereas the case of global roughness
is determined by the short-range self-avoiding interactions
[35], if w=wv,=0.8. On the other hand, if the sheet crum-
pling geometry is governed by the long-range elastic inter-
actions, the crease length scaling exponent is u<v,,=0.75
and so the sheet roughness is expected to display a self-affine
invariance within a bounded range of length scale, i.e., &
={=wy,, as it is observed for crumpled Albanene-2 paper
(see Table I).

IV. CONCLUSIONS

Our findings suggest that the fractal geometry of ran-
domly crumpled thin sheets is determined by the scaling

PHYSICAL REVIEW E 74, 061602 (2006)

properties of the crumpling network accumulating the energy
of external crumpling forces. Specifically, we found that the
mass fractal dimension of randomly folded balls is deter-
mined by the power law dependence of the mean crease
length on the sheet size (15), such that D),=2/u. Besides,
the surfaces of crumpled balls and unfolded crumpled sheets
both exhibit self-affine invariance, if w=wy,, or an intrinsi-
cally anomalous roughness, if u<vy,. In both cases the local
roughness is characterized by the universal local roughness
exponent {= u,,=0.75, whereas the global roughness expo-
nent (in the case of anomalous roughness) is found to be
material dependent. Specifically, we found that a=u=v
=2B+1-6 for w<wy,. This means that the crumpling con-
figurations of elastoplastic sheets are determined by the com-
petition between bending and stretching deformations in the
folded sheet; nevertheless, the local geometry of crumpling
is universal. These findings offer an insight into the nature of
crumpling phenomena.

ACKNOWLEDGMENT

This work has been supported by CONACYyT of the Mexi-
can Government under Project No. 44722.

[1] B. A. DiDonna and T. A. Witten, Phys. Rev. Lett. 87, 206105
(2001); K. Matan, R. B. Williams, T. A. Witten, and S. R.
Nagel, ibid. 88, 076101 (2002); E. Cerda and L. Mahadevan,
ibid. 90, 074302 (2003); A. Astrom, J. Timonen, and M. Kart-
tunen, ibid. 93, 244301 (2004); A. S. Balankin et al., Phys.
Rev. E 73, 065105(R) (2006).

[2] D. L. Blair and A. Kudrolli, Phys. Rev. Lett. 94, 166107
(2005).

[3]E. Sultan and A. Boudaoud, Phys. Rev. Lett. 96, 136103
(2006).

[4] A. E. Lobkovsky, S. Gentges, H. Li, D. Morse, and T. A.
Witten, Science 270, 1482 (1995); E. M. Kramer and T. A.
Witten, Phys. Rev. Lett. 78, 1303 (1997); G. Gompper, Nature
(London) 386, 439 (1997); M. B. Amar and Y. Romeau, Proc.
R. Soc. London, Ser. A 453, 729 (1997).

[5] Witten’s Lectures on Crumpling, edited by A. J. Wood, Special
issue of Physica A 313, 83 (2002).

[6] K. Matan, R. B. Williams, T. A. Witten, and S. R. Nagel, Phys.
Rev. Lett. 88, 076101 (2002).

[7] R. E. Albuquerque and M. A. F. Gomes, Physica A 310, 377
(2002); R. Cassia-Mouraa and M. A. F. Gomes, J. Theor. Biol.
238, 331 (2006).

[8] G. A. Vliegenthart and G. Gompper, Nat. Mater. 5, 216
(2006).

[9] M. A. F. Gomes, Am. J. Phys. 55, 649 (1987); J. Phys. A
20, 1.283 (1987); 23, L1281 (1990); M. A. F. Gomes, G. L.
Vasconcelos, and C. C. Nascimento, ibid. 20, L1167 (1987).

[10] M. A. F. Gomes and J. H. P. Soares, J. Phys. D 22, 989 (1989);
M. A. F. Gomes et al., ibid. 22, 1217 (1989).

[11] F. Plouraboué and S. Roux, Physica A 277, 173 (1996).

[12] L. Peterson, Sci. News (Washington, D. C.) (Washington, D.C.)
163, 524 (2003).

[13] T. A. Vilgis, J. Phys. IT 2,92 (1992); F. David and K. J. Wiese,
Phys. Rev. Lett. 76, 4564 (1996).

[14] R. H. Ko and C. P. Bean, Phys. Teach. 29, 78 (1991).

[15] Y. Kantor, M. Kadar, and D. R. Nelson, Phys. Rev. Lett. 60,
238 (1988).

[16] V. S. Ivanova, A. S. Balankin, 1. J. Bunin, and A. A. Oksogoev,
Synergetics and Fractals in Material Science (Nauka, Mos-
cow, 1994).

[17] As far as we know, no experimental data for the roughness
exponent of crumpled ball surfaces have been reported.

[18] P. A. Houle and J. P. Sethna, Phys. Rev. E 54, 278 (1996).

[19] A. S. Balankin et al., Proc. R. Soc. London, Ser. A 455, 2565
(1999); A. S. Balankin, O. Susarrey, and A. Bravo, Phys. Rev.
E 64, 066131 (2001); A. S. Balankin, O. Susarrey, and J. M.
Gonzdles, Phys. Rev. Lett. 90, 096101 (2003); A. S. Balankin
et al., ibid. 96, 056101 (2006).

[20] M. Alava and K. Niskanen, Rep. Prog. Phys. 69, 669 (2006).

[21] The goodness-of-fit tests with the chi-squared, Kolmogorov-
Smirnov, and Anderson statistics were performed with the help
of @RISK software (http://www.palisade.com).

[22] After relaxation, the variations in the ensemble averaged diam-
eter of balls folded by different persons are found to be less
than the statistical variations of the mean diameter (£5%);
nevertheless, the variations in the initial confinement ratio
achieve 25%.

[23] It should be pointed out that papers used in this work are

061602-6



INTRINSICALLY ANOMALOUS ROUGHNESS OF RANDOMLY ...

characterized by the low capacity of water absorption.

[24] A. Bri et al., Phys. Rev. Lett. 81, 4008 (1998); 92, 238101
(2004).

[25] A. S. Balankin and O. Susarrey, Philos. Mag. Lett. 79, 629
(1999); A. S. Balankin et al., Phys. Rev. E 72, 065101(R)
(2005).

[26] http://www.sciocorp.com (SCION-IMAGE, 1999).

[27] We note that the gamma distribution also provides a quite good
adjustment [see Fig. 4(c)] and cannot be clearly rejected in
terms of x?, Kolmogorov-Smirnov, and Anderson statistics.

[28] J. J. Ramasco, J. M. Lépez, and M. A. Rodriguez, Phys. Rev.
Lett. 84, 2199 (2000).

[29] A. S. Balankin, D. M. Matamoros, and I. Campos, Philos.

PHYSICAL REVIEW E 74, 061602 (2006)

Mag. Lett. 80, 165 (2000).

[30] F. Falconer, Fractals (Plenum Press, New York, 1988).

[31] We noted that u depends on the bending rigidity of paper as
J7AeS KL

[32] A. S. Balankin, Sov. Tech. Phys. Lett. 17, 532 (1991); Phys.
Rev. B 53, 5438 (1996).

[33] E. Cerda and L. Mahadevan, Proc. R. Soc. London, Ser. A
461, 671 (2005).

[34] A.-L. Barabdsi and N. E. Stanley, Fractal Concepts in Surface
Growth (Cambridge University Press, Cambridge, UK, 1995).

[35] M. J. Bowick and A. Travesset, Phys. Rep. 344, 255 (2001)

and references therein.

061602-7



